Cargando…
Detection and Identification of Defects in 3D-Printed Dielectric Structures via Thermographic Inspection and Deep Neural Networks
In this paper, we propose a new method based on active infrared thermography (IRT) applied to assess the state of 3D-printed structures. The technique utilized here—active IRT—assumes the use of an external energy source to heat the tested material and to create a temperature difference between unda...
Autores principales: | Szymanik, Barbara, Psuj, Grzegorz, Hashemi, Maryam, Lopato, Przemyslaw |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347505/ https://www.ncbi.nlm.nih.gov/pubmed/34361362 http://dx.doi.org/10.3390/ma14154168 |
Ejemplares similares
-
Glass–Adhesive–Steel Joint Inspection Using Mechanic and High Frequency Electromagnetic Waves
por: Kowalczyk, Jakub, et al.
Publicado: (2020) -
Generative Deep Learning-Based Thermographic Inspection of Artwork
por: Liu, Yi, et al.
Publicado: (2023) -
A System for Monitoring of Broadband FMR Phenomenon in Low-Carbon Steel Films Subjected to Deformations
por: Psuj, Grzegorz, et al.
Publicado: (2021) -
Thermographic Inspection of Internal Defects in Steel Structures: Analysis of Signal Processing Techniques in Pulsed Thermography
por: Chung, Yoonjae, et al.
Publicado: (2020) -
Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements †
por: Psuj, Grzegorz
Publicado: (2018)