Cargando…
A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation
Crowdsourcing is a new mode of value creation in which organizations leverage numerous Internet users to accomplish tasks. However, because these workers have different backgrounds and intentions, crowdsourcing suffers from quality concerns. In the literature, tracing the behavior of workers is pref...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347513/ https://www.ncbi.nlm.nih.gov/pubmed/34372243 http://dx.doi.org/10.3390/s21155007 |
_version_ | 1783735107832512512 |
---|---|
author | Al-Qershi, Fattoh Al-Qurishi, Muhammad Aksoy, Mehmet Sabih Faisal, Mohammed Algabri, Mohammed |
author_facet | Al-Qershi, Fattoh Al-Qurishi, Muhammad Aksoy, Mehmet Sabih Faisal, Mohammed Algabri, Mohammed |
author_sort | Al-Qershi, Fattoh |
collection | PubMed |
description | Crowdsourcing is a new mode of value creation in which organizations leverage numerous Internet users to accomplish tasks. However, because these workers have different backgrounds and intentions, crowdsourcing suffers from quality concerns. In the literature, tracing the behavior of workers is preferred over other methodologies such as consensus methods and gold standard approaches. This paper proposes two novel models based on workers’ behavior for task classification. These models newly benefit from time-series features and characteristics. The first model uses multiple time-series features with a machine learning classifier. The second model converts time series into images using the recurrent characteristic and applies a convolutional neural network classifier. The proposed models surpass the current state of-the-art baselines in terms of performance. In terms of accuracy, our feature-based model achieved 83.8%, whereas our convolutional neural network model achieved 76.6%. |
format | Online Article Text |
id | pubmed-8347513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83475132021-08-08 A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation Al-Qershi, Fattoh Al-Qurishi, Muhammad Aksoy, Mehmet Sabih Faisal, Mohammed Algabri, Mohammed Sensors (Basel) Article Crowdsourcing is a new mode of value creation in which organizations leverage numerous Internet users to accomplish tasks. However, because these workers have different backgrounds and intentions, crowdsourcing suffers from quality concerns. In the literature, tracing the behavior of workers is preferred over other methodologies such as consensus methods and gold standard approaches. This paper proposes two novel models based on workers’ behavior for task classification. These models newly benefit from time-series features and characteristics. The first model uses multiple time-series features with a machine learning classifier. The second model converts time series into images using the recurrent characteristic and applies a convolutional neural network classifier. The proposed models surpass the current state of-the-art baselines in terms of performance. In terms of accuracy, our feature-based model achieved 83.8%, whereas our convolutional neural network model achieved 76.6%. MDPI 2021-07-23 /pmc/articles/PMC8347513/ /pubmed/34372243 http://dx.doi.org/10.3390/s21155007 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Al-Qershi, Fattoh Al-Qurishi, Muhammad Aksoy, Mehmet Sabih Faisal, Mohammed Algabri, Mohammed A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation |
title | A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation |
title_full | A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation |
title_fullStr | A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation |
title_full_unstemmed | A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation |
title_short | A Time-Series-Based New Behavior Trace Model for Crowd Workers That Ensures Quality Annotation |
title_sort | time-series-based new behavior trace model for crowd workers that ensures quality annotation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347513/ https://www.ncbi.nlm.nih.gov/pubmed/34372243 http://dx.doi.org/10.3390/s21155007 |
work_keys_str_mv | AT alqershifattoh atimeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT alqurishimuhammad atimeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT aksoymehmetsabih atimeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT faisalmohammed atimeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT algabrimohammed atimeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT alqershifattoh timeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT alqurishimuhammad timeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT aksoymehmetsabih timeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT faisalmohammed timeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation AT algabrimohammed timeseriesbasednewbehaviortracemodelforcrowdworkersthatensuresqualityannotation |