Cargando…
FAC-Net: Feedback Attention Network Based on Context Encoder Network for Skin Lesion Segmentation
Considerable research and surveys indicate that skin lesions are an early symptom of skin cancer. Segmentation of skin lesions is still a hot research topic. Dermatological datasets in skin lesion segmentation tasks generated a large number of parameters when data augmented, limiting the application...
Autores principales: | Dong, Yuying, Wang, Liejun, Cheng, Shuli, Li, Yongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347551/ https://www.ncbi.nlm.nih.gov/pubmed/34372409 http://dx.doi.org/10.3390/s21155172 |
Ejemplares similares
-
TC-Net: Dual coding network of Transformer and CNN for skin lesion segmentation
por: Dong, Yuying, et al.
Publicado: (2022) -
HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
por: An, Lijing, et al.
Publicado: (2022) -
HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation
por: Hu, Xiaolong, et al.
Publicado: (2021) -
PCF-Net: Position and context information fusion attention convolutional neural network for skin lesion segmentation
por: Jiang, Yun, et al.
Publicado: (2023) -
HT-Net: A Hybrid Transformer Network for Fundus Vessel Segmentation
por: Hu, Xiaolong, et al.
Publicado: (2022)