Cargando…
Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs
For subjects with amyotrophic lateral sclerosis (ALS), the verbal and nonverbal communication is greatly impaired. Steady state visually evoked potential (SSVEP)-based brain computer interfaces (BCIs) is one of successful alternative augmentative communications to help subjects with ALS communicate...
Autores principales: | Chen, Yeou-Jiunn, Chen, Pei-Chung, Chen, Shih-Chung, Wu, Chung-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347742/ https://www.ncbi.nlm.nih.gov/pubmed/34372256 http://dx.doi.org/10.3390/s21155019 |
Ejemplares similares
-
A Survey of Stimulation Methods Used in SSVEP-Based BCIs
por: Zhu, Danhua, et al.
Publicado: (2010) -
Comparison of Different Visual Feedback Methods for SSVEP-Based BCIs
por: Benda, Mihaly, et al.
Publicado: (2020) -
Facilitating Applications of SSVEP-Based BCIs by Within-Subject Information Transfer
por: Liu, Xiaobing, et al.
Publicado: (2022) -
Autonomous Parameter Adjustment for SSVEP-Based BCIs with a Novel BCI Wizard
por: Gembler, Felix, et al.
Publicado: (2015) -
A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs
por: Habibzadeh, Hadi, et al.
Publicado: (2021)