Cargando…
Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles
Supercapacitors, S-C—capacitors that take advantage of the large capacitance at the interface between an electrode and an electrolyte—have found many short-term energy applications. The parallel plate cells were made of two transparent electrodes (ITO), each covered with a semiconductor-embedded, ac...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347783/ https://www.ncbi.nlm.nih.gov/pubmed/34361385 http://dx.doi.org/10.3390/ma14154183 |
_version_ | 1783735178232856576 |
---|---|
author | Grebel, Haim |
author_facet | Grebel, Haim |
author_sort | Grebel, Haim |
collection | PubMed |
description | Supercapacitors, S-C—capacitors that take advantage of the large capacitance at the interface between an electrode and an electrolyte—have found many short-term energy applications. The parallel plate cells were made of two transparent electrodes (ITO), each covered with a semiconductor-embedded, active carbon (A-C) layer. While A-C appears black, it is not an ideal blackbody absorber that absorbs all spectral light indiscriminately. In addition to a relatively flat optical absorption background, A-C exhibits two distinct absorption bands: in the near-infrared (near-IR and in the blue. The first may be attributed to absorption by the OH(−) group and the latter, by scattering, possibly through surface plasmons at the pore/electrolyte interface. Here, optical and thermal effects of sub-μm SiC particles that are embedded in A-C electrodes, are presented. Similar to nano-Si particles, SiC exhibits blue band absorption, but it is less likely to oxidize. Using Charge-Discharge (CD) experiments, the relative optically related capacitance increase may be as large as ~34% (68% when the illuminated area is taken into account). Capacitance increase was noted as the illuminated samples became hotter. This thermal effect amounts to <20% of the overall relative capacitance change using CD experiments. The thermal effect was quite large when the SiC particles were replaced by CdSe/ZnS quantum dots; for the latter, the thermal effect was 35% compared to 10% for the optical effect. When analyzing the optical effect one may consider two processes: ionization of the semiconductor particles and charge displacement under the cell’s terminals—a dipole effect. A model suggests that the capacitance increase is related to an optically induced dipole effect. |
format | Online Article Text |
id | pubmed-8347783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83477832021-08-08 Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles Grebel, Haim Materials (Basel) Article Supercapacitors, S-C—capacitors that take advantage of the large capacitance at the interface between an electrode and an electrolyte—have found many short-term energy applications. The parallel plate cells were made of two transparent electrodes (ITO), each covered with a semiconductor-embedded, active carbon (A-C) layer. While A-C appears black, it is not an ideal blackbody absorber that absorbs all spectral light indiscriminately. In addition to a relatively flat optical absorption background, A-C exhibits two distinct absorption bands: in the near-infrared (near-IR and in the blue. The first may be attributed to absorption by the OH(−) group and the latter, by scattering, possibly through surface plasmons at the pore/electrolyte interface. Here, optical and thermal effects of sub-μm SiC particles that are embedded in A-C electrodes, are presented. Similar to nano-Si particles, SiC exhibits blue band absorption, but it is less likely to oxidize. Using Charge-Discharge (CD) experiments, the relative optically related capacitance increase may be as large as ~34% (68% when the illuminated area is taken into account). Capacitance increase was noted as the illuminated samples became hotter. This thermal effect amounts to <20% of the overall relative capacitance change using CD experiments. The thermal effect was quite large when the SiC particles were replaced by CdSe/ZnS quantum dots; for the latter, the thermal effect was 35% compared to 10% for the optical effect. When analyzing the optical effect one may consider two processes: ionization of the semiconductor particles and charge displacement under the cell’s terminals—a dipole effect. A model suggests that the capacitance increase is related to an optically induced dipole effect. MDPI 2021-07-27 /pmc/articles/PMC8347783/ /pubmed/34361385 http://dx.doi.org/10.3390/ma14154183 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Grebel, Haim Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles |
title | Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles |
title_full | Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles |
title_fullStr | Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles |
title_full_unstemmed | Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles |
title_short | Optically Controlled Supercapacitors: Functional Active Carbon Electrodes with Semiconductor Particles |
title_sort | optically controlled supercapacitors: functional active carbon electrodes with semiconductor particles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347783/ https://www.ncbi.nlm.nih.gov/pubmed/34361385 http://dx.doi.org/10.3390/ma14154183 |
work_keys_str_mv | AT grebelhaim opticallycontrolledsupercapacitorsfunctionalactivecarbonelectrodeswithsemiconductorparticles |