Cargando…
Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data
In this study, we proposed a data-driven approach to the condition monitoring of the marine engine. Although several unsupervised methods in the maritime industry have existed, the common limitation was the interpretation of the anomaly; they do not explain why the model classifies specific data ins...
Autores principales: | Kim, Donghyun, Antariksa, Gian, Handayani, Melia Putri, Lee, Sangbong, Lee, Jihwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347810/ https://www.ncbi.nlm.nih.gov/pubmed/34372436 http://dx.doi.org/10.3390/s21155200 |
Ejemplares similares
-
Feature Attribution Analysis to Quantify the Impact of Oceanographic and Maneuverability Factors on Vessel Shaft Power Using Explainable Tree-Based Model
por: Kim, Donghyun, et al.
Publicado: (2023) -
An Ensemble-Based Approach to Anomaly Detection in Marine Engine Sensor Streams for Efficient Condition Monitoring and Analysis
por: Kim, Donghyun, et al.
Publicado: (2020) -
Data-Driven Prediction of Vessel Propulsion Power Using Support Vector Regression with Onboard Measurement and Ocean Data
por: Kim, Donghyun, et al.
Publicado: (2020) -
Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding
por: Venskus, Julius, et al.
Publicado: (2019) -
An explainable and efficient deep learning framework for video anomaly detection
por: Wu, Chongke, et al.
Publicado: (2021)