Cargando…
Printed Circuit Board Defect Detection Using Deep Learning via A Skip-Connected Convolutional Autoencoder
As technology evolves, more components are integrated into printed circuit boards (PCBs) and the PCB layout increases. Because small defects on signal trace can cause significant damage to the system, PCB surface inspection is one of the most important quality control processes. Owing to the limitat...
Autores principales: | Kim, Jungsuk, Ko, Jungbeom, Choi, Hojong, Kim, Hyunchul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347834/ https://www.ncbi.nlm.nih.gov/pubmed/34372203 http://dx.doi.org/10.3390/s21154968 |
Ejemplares similares
-
Deep and Densely Connected Networks for Classification of Diabetic Retinopathy
por: Riaz, Hamza, et al.
Publicado: (2020) -
Real-Time Sound Source Localization for Low-Power IoT Devices Based on Multi-Stream CNN
por: Ko, Jungbeom, et al.
Publicado: (2022) -
Ambient Light Rejection Integrated Circuit for Autonomous Adaptation on a Sub-Retinal Prosthetic System
por: Kang, Hosung, et al.
Publicado: (2021) -
Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
por: Tang, Ta-Wei, et al.
Publicado: (2022) -
Post-Voltage-Boost Circuit-Supported Single-Ended Class-B Amplifier for Piezoelectric Transducer Applications
por: Kim, Jungsuk, et al.
Publicado: (2020)