Cargando…
Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks
Dental caries is an extremely common problem in dentistry that affects a significant part of the population. Approximal caries are especially difficult to identify because their position makes clinical analysis difficult. Radiographic evaluation—more specifically, bitewing images—are mostly used in...
Autores principales: | Moran, Maira, Faria, Marcelo, Giraldi, Gilson, Bastos, Luciana, Oliveira, Larissa, Conci, Aura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347840/ https://www.ncbi.nlm.nih.gov/pubmed/34372429 http://dx.doi.org/10.3390/s21155192 |
Ejemplares similares
-
Do Radiographic Assessments of Periodontal Bone Loss Improve with Deep Learning Methods for Enhanced Image Resolution?
por: Moran, Maira, et al.
Publicado: (2021) -
Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs
por: Bayraktar, Yusuf, et al.
Publicado: (2021) -
Pen-type laser fluorescence device versus bitewing radiographs for caries detection on approximal surfaces
por: Bizhang, M., et al.
Publicado: (2016) -
Deep learning for early dental caries detection in bitewing radiographs
por: Lee, Shinae, et al.
Publicado: (2021) -
Assessing the Accuracy of Caries Diagnosis in Bitewing Radiographs Using Different Reproduction Media
por: Adibi, Sadaf, et al.
Publicado: (2018)