Cargando…
An Innovative Smart Concrete Anchorage with Self-Stress Sensing Capacity of Prestressing Stress of PS Tendon
An innovative smart concrete anchorage (SCA) has been developed for monitoring the stress of prestressing (PS) tendons by utilizing smart ultra-high-performance concrete (UHPC). The smart UHPC contained 2 vol% steel fibers and fine steel slag aggregates instead of silica sands. The effects of differ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347868/ https://www.ncbi.nlm.nih.gov/pubmed/34372487 http://dx.doi.org/10.3390/s21155251 |
Sumario: | An innovative smart concrete anchorage (SCA) has been developed for monitoring the stress of prestressing (PS) tendons by utilizing smart ultra-high-performance concrete (UHPC). The smart UHPC contained 2 vol% steel fibers and fine steel slag aggregates instead of silica sands. The effects of different electrode materials, arrangements, and connectors on the self-stress sensing capacity of the SCA are discussed. A prototype SCA demonstrated its feasibility and sufficient self-stress sensing capacity to be used in monitoring the prestressing loss of the PS tendon. As the tensile stress of the PS tendon increased from 0 to 1488 MPa, the fractional change in resistivity (FCR) of the prototype SCA, with horizontally paired copper wire electrodes and a plug-in type connector, decreased linearly from 0% to −1.53%, whereas the FCR increased linearly from −1.53% to −0.04% as the tensile stress of the PS tendon decreased from 1488 to 331 MPa. |
---|