Cargando…

A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios

For more than a decade, communication systems based on the IEEE 802.11p technology—often referred to as Dedicated Short-Range Communications (DSRC)—have been considered a de facto industry standard for Vehicle-to-Infrastructure (V2I) communication. The technology, however, is often criticized for it...

Descripción completa

Detalles Bibliográficos
Autores principales: Petrov, Tibor, Sevcik, Lukas, Pocta, Peter, Dado, Milan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347901/
https://www.ncbi.nlm.nih.gov/pubmed/34372332
http://dx.doi.org/10.3390/s21155095
_version_ 1783735206740492288
author Petrov, Tibor
Sevcik, Lukas
Pocta, Peter
Dado, Milan
author_facet Petrov, Tibor
Sevcik, Lukas
Pocta, Peter
Dado, Milan
author_sort Petrov, Tibor
collection PubMed
description For more than a decade, communication systems based on the IEEE 802.11p technology—often referred to as Dedicated Short-Range Communications (DSRC)—have been considered a de facto industry standard for Vehicle-to-Infrastructure (V2I) communication. The technology, however, is often criticized for its poor scalability, its suboptimal channel access method, and the need to install additional roadside infrastructure. In 3GPP Release 14, the functionality of existing cellular networks has been extended to support V2X use cases in an attempt to address the well-known drawbacks of the DSRC. In this paper, we present a complex simulation study in order to benchmark both technologies in a V2I communication context and an urban scenario. In particular, we compare the DSRC, LTE in the infrastructural mode (LTE-I), and LTE Device-to-Device (LTE-D2D) mode 3 in terms of the average end-to-end delay and Packet Delivery Ratio (PDR) under varying communication conditions achieved through the variation of the communication perimeter, message generation frequency, and road traffic intensity. The obtained results are put into the context of the networking and connectivity requirements of the most popular V2I C-ITS services. The simulation results indicate that only the DSRC technology is able to support the investigated V2I communication scenarios without any major limitations, achieving an average end-to-end delay of less than 100 milliseconds and a PDR above 96% in all of the investigated simulation scenarios. The LTE-I is applicable for the most of the low-frequency V2I services in a limited communication perimeter (<600 m) and for lower traffic intensities (<1000 vehicles per hour), achieving a delay pf less than 500 milliseconds and a PDR of up to 92%. The LTE-D2D in mode 3 achieves too great of an end-to-end delay (above 1000 milliseconds) and a PDR below 72%; thus, it is not suitable for the V2I services under consideration in a perimeter larger than 200 m. Moreover, the LTE-D2D mode 3 is very sensitive to the distance between the transmitter and its serving eNodeB, which heavily impacts the PDR achieved.
format Online
Article
Text
id pubmed-8347901
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83479012021-08-08 A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios Petrov, Tibor Sevcik, Lukas Pocta, Peter Dado, Milan Sensors (Basel) Article For more than a decade, communication systems based on the IEEE 802.11p technology—often referred to as Dedicated Short-Range Communications (DSRC)—have been considered a de facto industry standard for Vehicle-to-Infrastructure (V2I) communication. The technology, however, is often criticized for its poor scalability, its suboptimal channel access method, and the need to install additional roadside infrastructure. In 3GPP Release 14, the functionality of existing cellular networks has been extended to support V2X use cases in an attempt to address the well-known drawbacks of the DSRC. In this paper, we present a complex simulation study in order to benchmark both technologies in a V2I communication context and an urban scenario. In particular, we compare the DSRC, LTE in the infrastructural mode (LTE-I), and LTE Device-to-Device (LTE-D2D) mode 3 in terms of the average end-to-end delay and Packet Delivery Ratio (PDR) under varying communication conditions achieved through the variation of the communication perimeter, message generation frequency, and road traffic intensity. The obtained results are put into the context of the networking and connectivity requirements of the most popular V2I C-ITS services. The simulation results indicate that only the DSRC technology is able to support the investigated V2I communication scenarios without any major limitations, achieving an average end-to-end delay of less than 100 milliseconds and a PDR above 96% in all of the investigated simulation scenarios. The LTE-I is applicable for the most of the low-frequency V2I services in a limited communication perimeter (<600 m) and for lower traffic intensities (<1000 vehicles per hour), achieving a delay pf less than 500 milliseconds and a PDR of up to 92%. The LTE-D2D in mode 3 achieves too great of an end-to-end delay (above 1000 milliseconds) and a PDR below 72%; thus, it is not suitable for the V2I services under consideration in a perimeter larger than 200 m. Moreover, the LTE-D2D mode 3 is very sensitive to the distance between the transmitter and its serving eNodeB, which heavily impacts the PDR achieved. MDPI 2021-07-28 /pmc/articles/PMC8347901/ /pubmed/34372332 http://dx.doi.org/10.3390/s21155095 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Petrov, Tibor
Sevcik, Lukas
Pocta, Peter
Dado, Milan
A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios
title A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios
title_full A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios
title_fullStr A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios
title_full_unstemmed A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios
title_short A Performance Benchmark for Dedicated Short-Range Communications and LTE-Based Cellular-V2X in the Context of Vehicle-to-Infrastructure Communication and Urban Scenarios
title_sort performance benchmark for dedicated short-range communications and lte-based cellular-v2x in the context of vehicle-to-infrastructure communication and urban scenarios
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347901/
https://www.ncbi.nlm.nih.gov/pubmed/34372332
http://dx.doi.org/10.3390/s21155095
work_keys_str_mv AT petrovtibor aperformancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios
AT sevciklukas aperformancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios
AT poctapeter aperformancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios
AT dadomilan aperformancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios
AT petrovtibor performancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios
AT sevciklukas performancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios
AT poctapeter performancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios
AT dadomilan performancebenchmarkfordedicatedshortrangecommunicationsandltebasedcellularv2xinthecontextofvehicletoinfrastructurecommunicationandurbanscenarios