Cargando…

An Improved Calibration Method for the IMU Biases Utilizing KF-Based AdaGrad Algorithm

In the field of high accuracy strapdown inertial navigation system (SINS), the inertial measurement unit (IMU) biases can severely affect the navigation accuracy. Traditionally we use Kalman filter (KF) to estimate those biases. However, KF is an unbiased estimation method based on the assumption of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Zeyang, Yang, Gongliu, Cai, Qingzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347962/
https://www.ncbi.nlm.nih.gov/pubmed/34372290
http://dx.doi.org/10.3390/s21155055
Descripción
Sumario:In the field of high accuracy strapdown inertial navigation system (SINS), the inertial measurement unit (IMU) biases can severely affect the navigation accuracy. Traditionally we use Kalman filter (KF) to estimate those biases. However, KF is an unbiased estimation method based on the assumption of Gaussian white noise (GWN) while IMU sensors noise is irregular. Kalman filtering will no longer be accurate when the sensor’s noise is irregular. In order to obtain the optimal solution of the IMU biases, this paper proposes a novel method for the calibration of IMU biases utilizing the KF-based AdaGrad algorithm to solve this problem. Three improvements were made as the following: (1) The adaptive subgradient method (AdaGrad) is proposed to overcome the difficulty of setting step size. (2) A KF-based AdaGrad numerical function is derived and (3) a KF-based AdaGrad calibration algorithm is proposed in this paper. Experimental results show that the method proposed in this paper can effectively improve the accuracy of IMU biases in both static tests and car-mounted field tests.