Cargando…
Survey and Performance Analysis of Deep Learning Based Object Detection in Challenging Environments
Recent progress in deep learning has led to accurate and efficient generic object detection networks. Training of highly reliable models depends on large datasets with highly textured and rich images. However, in real-world scenarios, the performance of the generic object detection system decreases...
Autores principales: | Ahmed, Muhammad, Hashmi, Khurram Azeem, Pagani, Alain, Liwicki, Marcus, Stricker, Didier, Afzal, Muhammad Zeshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348086/ https://www.ncbi.nlm.nih.gov/pubmed/34372351 http://dx.doi.org/10.3390/s21155116 |
Ejemplares similares
-
Exploiting Concepts of Instance Segmentation to Boost Detection in Challenging Environments
por: Hashmi, Khurram Azeem, et al.
Publicado: (2022) -
Attention-Guided Disentangled Feature Aggregation for Video Object Detection
por: Muralidhara, Shishir, et al.
Publicado: (2022) -
CasTabDetectoRS: Cascade Network for Table Detection in Document Images with Recursive Feature Pyramid and Switchable Atrous Convolution
por: Hashmi, Khurram Azeem, et al.
Publicado: (2021) -
Three-Dimensional Reconstruction from a Single RGB Image Using Deep Learning: A Review
por: Khan, Muhammad Saif Ullah, et al.
Publicado: (2022) -
A Comprehensive Survey of Depth Completion Approaches
por: Khan, Muhammad Ahmed Ullah, et al.
Publicado: (2022)