Cargando…
Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres
Macroporous and hierarchically macro/mesoporous materials (mostly monoliths and microspheres) have attracted much attention for a variety of applications, such as supporting or enabling materials in chromatography, energy storage and conversion, catalysis, biomedical devices, drug delivery systems,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348184/ https://www.ncbi.nlm.nih.gov/pubmed/34361442 http://dx.doi.org/10.3390/ma14154247 |
_version_ | 1783735277737476096 |
---|---|
author | Marques, Ana C. Vale, Mário |
author_facet | Marques, Ana C. Vale, Mário |
author_sort | Marques, Ana C. |
collection | PubMed |
description | Macroporous and hierarchically macro/mesoporous materials (mostly monoliths and microspheres) have attracted much attention for a variety of applications, such as supporting or enabling materials in chromatography, energy storage and conversion, catalysis, biomedical devices, drug delivery systems, and environmental remediation. A well-succeeded method to obtain these tailored porous materials relies on the sol-gel technique, combined with phase separation by spinodal decomposition, and involves as well emulsification as a soft template, in the case of the synthesis of porous microspheres. Significant advancements have been witnessed, in terms of synthesis methodologies optimized either for the use of alkoxides or metal–salts and material design, including the grafting or immobilization of a specific species (or nanoparticles) to enable the most recent trends in technological applications, such as photocatalysis. In this context, the evolution, in terms of material composition and synthesis strategies, is discussed in a concerted fashion in this review, with the goal of inspiring new improvements and breakthroughs in the framework of porous materials. |
format | Online Article Text |
id | pubmed-8348184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83481842021-08-08 Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres Marques, Ana C. Vale, Mário Materials (Basel) Review Macroporous and hierarchically macro/mesoporous materials (mostly monoliths and microspheres) have attracted much attention for a variety of applications, such as supporting or enabling materials in chromatography, energy storage and conversion, catalysis, biomedical devices, drug delivery systems, and environmental remediation. A well-succeeded method to obtain these tailored porous materials relies on the sol-gel technique, combined with phase separation by spinodal decomposition, and involves as well emulsification as a soft template, in the case of the synthesis of porous microspheres. Significant advancements have been witnessed, in terms of synthesis methodologies optimized either for the use of alkoxides or metal–salts and material design, including the grafting or immobilization of a specific species (or nanoparticles) to enable the most recent trends in technological applications, such as photocatalysis. In this context, the evolution, in terms of material composition and synthesis strategies, is discussed in a concerted fashion in this review, with the goal of inspiring new improvements and breakthroughs in the framework of porous materials. MDPI 2021-07-29 /pmc/articles/PMC8348184/ /pubmed/34361442 http://dx.doi.org/10.3390/ma14154247 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Marques, Ana C. Vale, Mário Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres |
title | Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres |
title_full | Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres |
title_fullStr | Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres |
title_full_unstemmed | Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres |
title_short | Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres |
title_sort | macroporosity control by phase separation in sol-gel derived monoliths and microspheres |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348184/ https://www.ncbi.nlm.nih.gov/pubmed/34361442 http://dx.doi.org/10.3390/ma14154247 |
work_keys_str_mv | AT marquesanac macroporositycontrolbyphaseseparationinsolgelderivedmonolithsandmicrospheres AT valemario macroporositycontrolbyphaseseparationinsolgelderivedmonolithsandmicrospheres |