Cargando…

Prediction of Molecular Properties Using Molecular Topographic Map

Prediction of molecular properties plays a critical role towards rational drug design. In this study, the Molecular Topographic Map (MTM) is proposed, which is a two-dimensional (2D) map that can be used to represent a molecule. An MTM is generated from the atomic features set of a molecule using ge...

Descripción completa

Detalles Bibliográficos
Autor principal: Yoshimori, Atsushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348331/
https://www.ncbi.nlm.nih.gov/pubmed/34361624
http://dx.doi.org/10.3390/molecules26154475
_version_ 1783735313274765312
author Yoshimori, Atsushi
author_facet Yoshimori, Atsushi
author_sort Yoshimori, Atsushi
collection PubMed
description Prediction of molecular properties plays a critical role towards rational drug design. In this study, the Molecular Topographic Map (MTM) is proposed, which is a two-dimensional (2D) map that can be used to represent a molecule. An MTM is generated from the atomic features set of a molecule using generative topographic mapping and is then used as input data for analyzing structure-property/activity relationships. In the visualization and classification of 20 amino acids, differences of the amino acids can be visually confirmed from and revealed by hierarchical clustering with a similarity matrix of their MTMs. The prediction of molecular properties was performed on the basis of convolutional neural networks using MTMs as input data. The performance of the predictive models using MTM was found to be equal to or better than that using Morgan fingerprint or MACCS keys. Furthermore, data augmentation of MTMs using mixup has improved the prediction performance. Since molecules converted to MTMs can be treated like 2D images, they can be easily used with existing neural networks for image recognition and related technologies. MTM can be effectively utilized to predict molecular properties of small molecules to aid drug discovery research.
format Online
Article
Text
id pubmed-8348331
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83483312021-08-08 Prediction of Molecular Properties Using Molecular Topographic Map Yoshimori, Atsushi Molecules Article Prediction of molecular properties plays a critical role towards rational drug design. In this study, the Molecular Topographic Map (MTM) is proposed, which is a two-dimensional (2D) map that can be used to represent a molecule. An MTM is generated from the atomic features set of a molecule using generative topographic mapping and is then used as input data for analyzing structure-property/activity relationships. In the visualization and classification of 20 amino acids, differences of the amino acids can be visually confirmed from and revealed by hierarchical clustering with a similarity matrix of their MTMs. The prediction of molecular properties was performed on the basis of convolutional neural networks using MTMs as input data. The performance of the predictive models using MTM was found to be equal to or better than that using Morgan fingerprint or MACCS keys. Furthermore, data augmentation of MTMs using mixup has improved the prediction performance. Since molecules converted to MTMs can be treated like 2D images, they can be easily used with existing neural networks for image recognition and related technologies. MTM can be effectively utilized to predict molecular properties of small molecules to aid drug discovery research. MDPI 2021-07-24 /pmc/articles/PMC8348331/ /pubmed/34361624 http://dx.doi.org/10.3390/molecules26154475 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yoshimori, Atsushi
Prediction of Molecular Properties Using Molecular Topographic Map
title Prediction of Molecular Properties Using Molecular Topographic Map
title_full Prediction of Molecular Properties Using Molecular Topographic Map
title_fullStr Prediction of Molecular Properties Using Molecular Topographic Map
title_full_unstemmed Prediction of Molecular Properties Using Molecular Topographic Map
title_short Prediction of Molecular Properties Using Molecular Topographic Map
title_sort prediction of molecular properties using molecular topographic map
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348331/
https://www.ncbi.nlm.nih.gov/pubmed/34361624
http://dx.doi.org/10.3390/molecules26154475
work_keys_str_mv AT yoshimoriatsushi predictionofmolecularpropertiesusingmoleculartopographicmap