Cargando…
FEA and Machine Learning Techniques for Hidden Structure Analysis †
This study focuses on investigating and predicting two hidden structures: plant root system architecture and non-visible bubbles in plexiglass. Current approaches are damaging, expensive, or time-consuming. Infrared imaging was used to study the root structure and depth of small plants and to detect...
Autores principales: | Shi, Xijin, Hsieh, Sheng-Jen, Romero, Roseli Aparecida Francelin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348504/ https://www.ncbi.nlm.nih.gov/pubmed/34372395 http://dx.doi.org/10.3390/s21155159 |
Ejemplares similares
-
Inductor Design Optimization Using FEA Supervised Machine Learning
por: Cajander, D, et al.
Publicado: (2022) -
Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors
por: Ranieri, Caetano Mazzoni, et al.
Publicado: (2021) -
3D FEA Computation of the CLIC Machine Detector Interface Magnets
por: Bartalesi, A, et al.
Publicado: (2012) -
Characterization of post-transfusion anti-FEA 1 alloantibodies in transfusion-naive FEA 1-negative cats
por: Cannavino, Alyssa, et al.
Publicado: (2022) -
FEA Simulation of the Biomechanical Structure Overload in the University Campus Planting
por: Dounar, Stanislau, et al.
Publicado: (2020)