Cargando…
Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities
Non-invasive photoplethysmography (PPG) technology was developed to track heart rate during physical activity under free-living conditions. Automated analysis of PPG has made it useful in both clinical and non-clinical applications. Because of their generalization capabilities, deep learning methods...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348622/ https://www.ncbi.nlm.nih.gov/pubmed/34372447 http://dx.doi.org/10.3390/s21155212 |
_version_ | 1783735384710053888 |
---|---|
author | Wilkosz, Michał Szczęsna, Agnieszka |
author_facet | Wilkosz, Michał Szczęsna, Agnieszka |
author_sort | Wilkosz, Michał |
collection | PubMed |
description | Non-invasive photoplethysmography (PPG) technology was developed to track heart rate during physical activity under free-living conditions. Automated analysis of PPG has made it useful in both clinical and non-clinical applications. Because of their generalization capabilities, deep learning methods can be a major direction in the search for a heart rate estimation solution based on signals from wearable devices. A novel multi-headed convolutional neural network model enriched with long short-term memory cells (MH Conv-LSTM DeepPPG) was proposed for the estimation of heart rate based on signals measured by a wrist-worn wearable device, such as PPG and acceleration signals. For the PPG-DaLiA dataset, the proposed solution improves the performance of previously proposed methods. An experimental approach was used to develop the final network architecture. The average mean absolute error (MAE) of the final solution was 6.28 bpm and Pearson’s correlation coefficient between the estimated and true heart rate values was 0.85. |
format | Online Article Text |
id | pubmed-8348622 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83486222021-08-08 Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities Wilkosz, Michał Szczęsna, Agnieszka Sensors (Basel) Article Non-invasive photoplethysmography (PPG) technology was developed to track heart rate during physical activity under free-living conditions. Automated analysis of PPG has made it useful in both clinical and non-clinical applications. Because of their generalization capabilities, deep learning methods can be a major direction in the search for a heart rate estimation solution based on signals from wearable devices. A novel multi-headed convolutional neural network model enriched with long short-term memory cells (MH Conv-LSTM DeepPPG) was proposed for the estimation of heart rate based on signals measured by a wrist-worn wearable device, such as PPG and acceleration signals. For the PPG-DaLiA dataset, the proposed solution improves the performance of previously proposed methods. An experimental approach was used to develop the final network architecture. The average mean absolute error (MAE) of the final solution was 6.28 bpm and Pearson’s correlation coefficient between the estimated and true heart rate values was 0.85. MDPI 2021-07-31 /pmc/articles/PMC8348622/ /pubmed/34372447 http://dx.doi.org/10.3390/s21155212 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wilkosz, Michał Szczęsna, Agnieszka Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities |
title | Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities |
title_full | Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities |
title_fullStr | Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities |
title_full_unstemmed | Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities |
title_short | Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities |
title_sort | multi-headed conv-lstm network for heart rate estimation during daily living activities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348622/ https://www.ncbi.nlm.nih.gov/pubmed/34372447 http://dx.doi.org/10.3390/s21155212 |
work_keys_str_mv | AT wilkoszmichał multiheadedconvlstmnetworkforheartrateestimationduringdailylivingactivities AT szczesnaagnieszka multiheadedconvlstmnetworkforheartrateestimationduringdailylivingactivities |