Cargando…
Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature
High temperature severely affects the nature of the ingredients used to produce concrete, which in turn reduces the strength properties of the concrete. It is a difficult and time-consuming task to achieve the desired compressive strength of concrete. However, the application of supervised machine l...
Autores principales: | Ahmad, Ayaz, Ostrowski, Krzysztof Adam, Maślak, Mariusz, Farooq, Furqan, Mehmood, Imran, Nafees, Afnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348726/ https://www.ncbi.nlm.nih.gov/pubmed/34361416 http://dx.doi.org/10.3390/ma14154222 |
Ejemplares similares
-
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete
por: Anjum, Madiha, et al.
Publicado: (2022) -
Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches
por: Khan, Mohsin Ali, et al.
Publicado: (2021) -
Supervised Learning Methods for Modeling Concrete Compressive Strength Prediction at High Temperature
por: Ahmad, Mahmood, et al.
Publicado: (2021)