Cargando…
Real-Time In-Vehicle Air Quality Monitoring System Using Machine Learning Prediction Algorithm
This paper presents the development of a real-time cloud-based in-vehicle air quality monitoring system that enables the prediction of the current and future cabin air quality. The designed system provides predictive analytics using machine learning algorithms that can measure the drivers’ drowsines...
Autores principales: | Goh, Chew Cheik, Kamarudin, Latifah Munirah, Zakaria, Ammar, Nishizaki, Hiromitsu, Ramli, Nuraminah, Mao, Xiaoyang, Syed Zakaria, Syed Muhammad Mamduh, Kanagaraj, Ericson, Abdull Sukor, Abdul Syafiq, Elham, Md. Fauzan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348785/ https://www.ncbi.nlm.nih.gov/pubmed/34372192 http://dx.doi.org/10.3390/s21154956 |
Ejemplares similares
-
RF-Based Moisture Content Determination in Rice Using Machine Learning Techniques
por: Azmi, Noraini, et al.
Publicado: (2021) -
Development of a Scalable Testbed for Mobile Olfaction Verification
por: Syed Zakaria, Syed Muhammad Mamduh, et al.
Publicado: (2015) -
Non-Contact Breathing Monitoring Using Sleep Breathing Detection Algorithm (SBDA) Based on UWB Radar Sensors
por: Husaini, Muhammad, et al.
Publicado: (2022) -
Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques
por: Kamarudin, Kamarulzaman, et al.
Publicado: (2014) -
A New Method of Rice Moisture Content Determination Using Voxel Weighting-Based from Radio Tomography Images
por: Mohd Ramli, Nurul Amira, et al.
Publicado: (2021)