Cargando…
A Bayesian Method for Dynamic Origin–Destination Demand Estimation Synthesizing Multiple Sources of Data
In this paper a Bayesian method is proposed to estimate dynamic origin–destination (O–D) demand. The proposed method can synthesize multiple sources of data collected by various sensors, including link counts, turning movements at intersections, flows, and travel times on partial paths. Time-depende...
Autores principales: | Yu, Hang, Zhu, Senlai, Yang, Jie, Guo, Yuntao, Tang, Tianpei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348829/ https://www.ncbi.nlm.nih.gov/pubmed/34372206 http://dx.doi.org/10.3390/s21154971 |
Ejemplares similares
-
Integrating Optimal Heterogeneous Sensor Deployment and Operation Strategies for Dynamic Origin-Destination Demand Estimation
por: Zhu, Senlai, et al.
Publicado: (2017) -
Evaluating the Safety Risk of Rural Roadsides Using a Bayesian Network Method
por: Tang, Tianpei, et al.
Publicado: (2019) -
A Combined Modal and Route Choice Behavioral Complementarity Equilibrium Model with Users of Vehicles and Electric Bicycles
por: Zhu, Senlai, et al.
Publicado: (2020) -
Is On-Demand Dynorphin Destined to Be in Demand to Decrease Seizures?
por: Christian-Hinman, Catherine A.
Publicado: (2020) -
Measuring health of highway network configuration against dynamic Origin-Destination demand network using weighted complex network analysis
por: Tak, Sehyun, et al.
Publicado: (2018)