Cargando…
Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network
The CNN (convolutional neural network)-based small target detection techniques for static complex scenes have been applied in many fields, but there are still certain technical challenges. This paper proposes a novel high-resolution small-target detection network named the IIHNet (information interw...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348926/ https://www.ncbi.nlm.nih.gov/pubmed/34372339 http://dx.doi.org/10.3390/s21155103 |
_version_ | 1783735459638149120 |
---|---|
author | Fu, Yongzhong Li, Xiufeng Hu, Zungang |
author_facet | Fu, Yongzhong Li, Xiufeng Hu, Zungang |
author_sort | Fu, Yongzhong |
collection | PubMed |
description | The CNN (convolutional neural network)-based small target detection techniques for static complex scenes have been applied in many fields, but there are still certain technical challenges. This paper proposes a novel high-resolution small-target detection network named the IIHNet (information interworking high-resolution network) for complex scenes, which is based on information interworking processing technology. The proposed network not only can output a high-resolution presentation of a small target but can also keep the detection network simple and efficient. The key characteristic of the proposed network is that the target features are divided into three categories according to image resolution: high-resolution, medium-resolution, and low-resolution features. The basic features are extracted by convolution at the initial layer of the network. Then, convolution is carried out synchronously in the three resolution channels with information fusion in the horizontal and vertical directions of the network. At the same time, multiple utilizations and augmentations of feature information are carried out in the channel convolution direction. Experimental results show that the proposed network can achieve higher reasoning performance than the other compared networks without any compromise in terms of the detection effect. |
format | Online Article Text |
id | pubmed-8348926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83489262021-08-08 Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network Fu, Yongzhong Li, Xiufeng Hu, Zungang Sensors (Basel) Article The CNN (convolutional neural network)-based small target detection techniques for static complex scenes have been applied in many fields, but there are still certain technical challenges. This paper proposes a novel high-resolution small-target detection network named the IIHNet (information interworking high-resolution network) for complex scenes, which is based on information interworking processing technology. The proposed network not only can output a high-resolution presentation of a small target but can also keep the detection network simple and efficient. The key characteristic of the proposed network is that the target features are divided into three categories according to image resolution: high-resolution, medium-resolution, and low-resolution features. The basic features are extracted by convolution at the initial layer of the network. Then, convolution is carried out synchronously in the three resolution channels with information fusion in the horizontal and vertical directions of the network. At the same time, multiple utilizations and augmentations of feature information are carried out in the channel convolution direction. Experimental results show that the proposed network can achieve higher reasoning performance than the other compared networks without any compromise in terms of the detection effect. MDPI 2021-07-28 /pmc/articles/PMC8348926/ /pubmed/34372339 http://dx.doi.org/10.3390/s21155103 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fu, Yongzhong Li, Xiufeng Hu, Zungang Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network |
title | Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network |
title_full | Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network |
title_fullStr | Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network |
title_full_unstemmed | Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network |
title_short | Small-Target Complex-Scene Detection Method Based on Information Interworking High-Resolution Network |
title_sort | small-target complex-scene detection method based on information interworking high-resolution network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348926/ https://www.ncbi.nlm.nih.gov/pubmed/34372339 http://dx.doi.org/10.3390/s21155103 |
work_keys_str_mv | AT fuyongzhong smalltargetcomplexscenedetectionmethodbasedoninformationinterworkinghighresolutionnetwork AT lixiufeng smalltargetcomplexscenedetectionmethodbasedoninformationinterworkinghighresolutionnetwork AT huzungang smalltargetcomplexscenedetectionmethodbasedoninformationinterworkinghighresolutionnetwork |