Cargando…
The Adaptive Power of Ammophila arenaria: Biomimetic Study, Systematic Observation, Parametric Design and Experimental Tests with Bimetal
The aim of our study was to apply a biomimetic approach, inspired by the Ammophila arenaria. This organism possesses a reversible leaf opening and closing mechanism that responds to water and salt stress (hydronastic movement). We adopted a problem-based biomimetic methodology in three stages: (i) t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348932/ https://www.ncbi.nlm.nih.gov/pubmed/34372158 http://dx.doi.org/10.3390/polym13152554 |
Sumario: | The aim of our study was to apply a biomimetic approach, inspired by the Ammophila arenaria. This organism possesses a reversible leaf opening and closing mechanism that responds to water and salt stress (hydronastic movement). We adopted a problem-based biomimetic methodology in three stages: (i) two observation studies; (ii) how to abstract and develop a parametric model to simulate the leaf movement; and (iii) experiments with bimetal, a smart material that curls up when heated. We added creases to the bimetal active layer in analogy to the position of bulliform cells. These cells determine the leaf-closing pattern. The experiments demonstrated that creases influence and can change the direction of the bimetal natural movement. Thus, it is possible to replicate the Ammophila arenaria leaf-rolling mechanism in response to temperature variation and solar radiation in the bimetal. In future works, we will be able to propose responsive facade solutions based on these results. |
---|