Cargando…
Target Classification in Synthetic Aperture Radar Images Using Quantized Wavelet Scattering Networks †
The need to classify targets and features in high-resolution imagery is of interest in applications such as detection of landmines in ground penetrating radar and tumors in medical ultrasound images. Convolutional neural networks (CNNs) trained using extensive datasets are being investigated recentl...
Autores principales: | Raj, Raghu G., Fox, Maxine R., Narayanan, Ram M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348969/ https://www.ncbi.nlm.nih.gov/pubmed/34372219 http://dx.doi.org/10.3390/s21154981 |
Ejemplares similares
-
Imaging with Synthetic Aperture Radar
por: Massonnet, Didier, et al.
Publicado: (2008) -
Target scattering mechanism in polarimetric synthetic aperture radar: interpretation and application
por: Chen, Si-Wei, et al.
Publicado: (2018) -
Synthetic aperture radar polarimetry
por: Van Zyl, Jakob, et al.
Publicado: (2011) -
Adaptive Local Aspect Dictionary Pair Learning for Synthetic Aperture Radar Target Image Classification
por: Zhang, Xinzheng, et al.
Publicado: (2018) -
ERS synthetic aperture radar imaging of impact craters
por: Harris, R A
Publicado: (2003)