Cargando…

Indoor Acoustic Signals Enhanced Algorithm and Visualization Analysis

A pure acoustic signal can be easy to realize signal analysis and feature extraction. However, the surrounding noises will affect the content of acoustic signals as well as auditory fatigue to the audience. Therefore, it is vital to overcome the problem of noises that affect the acoustic signal. An...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Suqing, Luo, Xiaonan, Sun, Xiyan, Xiao, Jianming, Jiang, Jingyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349258/
https://www.ncbi.nlm.nih.gov/pubmed/34373686
http://dx.doi.org/10.1155/2021/7592064
Descripción
Sumario:A pure acoustic signal can be easy to realize signal analysis and feature extraction. However, the surrounding noises will affect the content of acoustic signals as well as auditory fatigue to the audience. Therefore, it is vital to overcome the problem of noises that affect the acoustic signal. An indoor acoustic signal enhanced method based on image source (IS) method, filtered-x least mean square (FxLMS) algorithm, and the combination of Delaunay triangulation and fuzzy c-means (FCM) clustering algorithm is proposed. In the first stage of the proposed system, the IS method was used to simulate indoor impulse response. Next, the FxLMS algorithm was used to reduce the acoustic signals with noise. Lastly, the quiet areas are optimized and visualized by combining the Delaunay triangulation and FCM clustering algorithm. The experimental analysis results on the proposed system show that better noise reduction can be achieved than the most widely used least mean square algorithm. Visualization was validated with an intuitive understanding of the indoor sound field distribution and the quiet areas.