Cargando…
Adaptively temporal graph convolution model for epidemic prediction of multiple age groups
INTRODUCTION: Multivariate time series prediction of infectious diseases is significant to public health, and the deep learning method has attracted increasing attention in this research field. MATERIAL AND METHODS: An adaptively temporal graph convolution (ATGCN) model, which learns the contact pat...
Autores principales: | Wang, Yuejiao, Zeng, Dajun Daniel, Zhang, Qingpeng, Zhao, Pengfei, Wang, Xiaoli, Wang, Quanyi, Luo, Yin, Cao, Zhidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349400/ http://dx.doi.org/10.1016/j.fmre.2021.07.007 |
Ejemplares similares
-
Spatio-temporal evolution of Beijing 2003 SARS epidemic
por: Cao, ZhiDong, et al.
Publicado: (2010) -
Reconstruction of the Transmission Chain of COVID-19 Outbreak in Beijing's Xinfadi Market, China
por: Luo, Tianyi, et al.
Publicado: (2022) -
Constructing public health evidence knowledge graph for decision-making support from COVID-19 literature of modelling study
por: Yang, Yunrong, et al.
Publicado: (2021) -
Using deep learning to predict the hand-foot-and-mouth disease of enterovirus A71 subtype in Beijing from 2011 to 2018
por: Wang, Yuejiao, et al.
Publicado: (2020) -
Epidemiological Analysis, Detection, and Comparison of Space-Time Patterns of Beijing Hand-Foot-Mouth Disease (2008–2012)
por: Wang, Jiaojiao, et al.
Publicado: (2014)