Cargando…

Optimization of betaine-sorbitol natural deep eutectic solvent-based ultrasound-assisted extraction and pancreatic lipase inhibitory activity of chlorogenic acid and caffeine content from robusta green coffee beans

Natural deep eutectic solvent (NADES) is an alternative approach in natural product extraction with various advantages, including low toxicity, biodegradable, and suitable phytochemical compounds in a wide range of polarity. Chlorogenic acid (CGA) and caffeine, a well-known compound in the coffee be...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Islamudin, Syakfanaya, Adisya Miftah, Azminah, Azminah, Saputri, Fadlina Chany, Mun'im, Abdul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350192/
https://www.ncbi.nlm.nih.gov/pubmed/34401583
http://dx.doi.org/10.1016/j.heliyon.2021.e07702
Descripción
Sumario:Natural deep eutectic solvent (NADES) is an alternative approach in natural product extraction with various advantages, including low toxicity, biodegradable, and suitable phytochemical compounds in a wide range of polarity. Chlorogenic acid (CGA) and caffeine, a well-known compound in the coffee bean, have various potential health benefits. This study aims to optimize the betaine–sorbitol NADES-based ultrasound-assisted extraction (UAE) method of CGA and caffeine from Robusta green coffee beans and determine the inhibitory activity of robusta green coffee beans extract of the betaine-sorbitol NADES-UAE from the optimum condition on pancreatic lipase in vitro and in silico. The betaine-sorbitol NADES-UAE factors as experimental design variable parameters include betaine-sorbitol ratio (0.5:1.2, 1.25:1.2, and 2:1.2 mol), extraction time (10, 35, and 60 min), and solid-liquid ratio (1:10, 1:20, and 1:30 g/mL). Response surface methodology and Box-Behnken Design were used to optimize the extraction process. The response surface was calculated by using CGA and caffeine content as response values. CGA and caffeine content was determined by High-Performance Liquid Chromatography. Whereas in vitro lipase inhibitory activity assay examined by spectrophotometric measurement and in silico molecular docking analysis on PDB ID: 1LPB. According to the results, the optimum conditions of the betaine-sorbitol NADES-UAE have obtained the betaine-sorbitol ratio of 1.25: 1.2 mol, solid-liquid ratio of 1:30 mg/mL, and 60 min extraction time. Furthermore, obtained Robusta green coffee extract from the optimum condition of the betaine-sorbitol NADES-UAE showed high potential to inhibit lipase activity with IC(50) of 18.02 μg/ml, comparable with IC(50) of standard CGA (11.90 μg/ml) and caffeine (15.59 μg/ml), where potential interaction of both standards was confirmed using molecular docking analysis. Our finding demonstrated the optimum condition of the betaine-sorbitol NADES-UAE method for CGA and caffeine extraction and the potential pancreatic lipase inhibition activity from the Robusta green coffee bean.