Cargando…

Modelling of dark fermentation of glucose and sour cabbage

In the article, modified Anaerobic Digestion Models 1 (ADM-1) was tested for modelling dark fermentation for hydrogen production. The model refitting was done with the Euler method. The new model was based on sets of differential equations. The model was checked for hydrogen production from sour cab...

Descripción completa

Detalles Bibliográficos
Autores principales: Sołowski, Gaweł, Pastuszak, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350504/
https://www.ncbi.nlm.nih.gov/pubmed/34401576
http://dx.doi.org/10.1016/j.heliyon.2021.e07690
Descripción
Sumario:In the article, modified Anaerobic Digestion Models 1 (ADM-1) was tested for modelling dark fermentation for hydrogen production. The model refitting was done with the Euler method. The new model was based on sets of differential equations. The model was checked for hydrogen production from sour cabbage in batch and semi-batch in 5 g VSS (volatile solid suspension)/L and at the semi-batch process from glucose at 5 and 10 g VSS/L. Added parameters determined the conversion of a substrate, hydrogen production, and stress parameters. In the case of a semi-batch process, for one month, cumulative hydrogen production from sour cabbage of 5 g VSS/L was 0.9 L of cumulative hydrogen volume and from glucose 5 g VSS/L (in case of feeding 2 g VSS/L every two days) 2.5 L of cumulative hydrogen volume. At the bacterial population level, hydrogen production was a continuous process at an adequate range of population size and environmental parameters.