Cargando…
Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood
Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians,...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350517/ https://www.ncbi.nlm.nih.gov/pubmed/34381737 http://dx.doi.org/10.3389/fcimb.2021.634215 |
_version_ | 1783735779372040192 |
---|---|
author | Kondori, Nahid Kurtovic, Amra Piñeiro-Iglesias, Beatriz Salvà-Serra, Francisco Jaén-Luchoro, Daniel Andersson, Björn Alves, Gelio Ogurtsov, Aleksey Thorsell, Annika Fuchs, Johannes Tunovic, Timur Kamenska, Nina Karlsson, Anders Yu, Yi-Kuo Moore, Edward R. B. Karlsson, Roger |
author_facet | Kondori, Nahid Kurtovic, Amra Piñeiro-Iglesias, Beatriz Salvà-Serra, Francisco Jaén-Luchoro, Daniel Andersson, Björn Alves, Gelio Ogurtsov, Aleksey Thorsell, Annika Fuchs, Johannes Tunovic, Timur Kamenska, Nina Karlsson, Anders Yu, Yi-Kuo Moore, Edward R. B. Karlsson, Roger |
author_sort | Kondori, Nahid |
collection | PubMed |
description | Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called “proteotyping”. To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished. |
format | Online Article Text |
id | pubmed-8350517 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83505172021-08-10 Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood Kondori, Nahid Kurtovic, Amra Piñeiro-Iglesias, Beatriz Salvà-Serra, Francisco Jaén-Luchoro, Daniel Andersson, Björn Alves, Gelio Ogurtsov, Aleksey Thorsell, Annika Fuchs, Johannes Tunovic, Timur Kamenska, Nina Karlsson, Anders Yu, Yi-Kuo Moore, Edward R. B. Karlsson, Roger Front Cell Infect Microbiol Cellular and Infection Microbiology Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called “proteotyping”. To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished. Frontiers Media S.A. 2021-07-26 /pmc/articles/PMC8350517/ /pubmed/34381737 http://dx.doi.org/10.3389/fcimb.2021.634215 Text en Copyright © 2021 Kondori, Kurtovic, Piñeiro-Iglesias, Salvà-Serra, Jaén-Luchoro, Andersson, Alves, Ogurtsov, Thorsell, Fuchs, Tunovic, Kamenska, Karlsson, Yu, Moore and Karlsson https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular and Infection Microbiology Kondori, Nahid Kurtovic, Amra Piñeiro-Iglesias, Beatriz Salvà-Serra, Francisco Jaén-Luchoro, Daniel Andersson, Björn Alves, Gelio Ogurtsov, Aleksey Thorsell, Annika Fuchs, Johannes Tunovic, Timur Kamenska, Nina Karlsson, Anders Yu, Yi-Kuo Moore, Edward R. B. Karlsson, Roger Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood |
title | Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood |
title_full | Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood |
title_fullStr | Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood |
title_full_unstemmed | Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood |
title_short | Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood |
title_sort | mass spectrometry proteotyping-based detection and identification of staphylococcus aureus, escherichia coli, and candida albicans in blood |
topic | Cellular and Infection Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350517/ https://www.ncbi.nlm.nih.gov/pubmed/34381737 http://dx.doi.org/10.3389/fcimb.2021.634215 |
work_keys_str_mv | AT kondorinahid massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT kurtovicamra massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT pineiroiglesiasbeatriz massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT salvaserrafrancisco massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT jaenluchorodaniel massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT anderssonbjorn massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT alvesgelio massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT ogurtsovaleksey massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT thorsellannika massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT fuchsjohannes massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT tunovictimur massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT kamenskanina massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT karlssonanders massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT yuyikuo massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT mooreedwardrb massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood AT karlssonroger massspectrometryproteotypingbaseddetectionandidentificationofstaphylococcusaureusescherichiacoliandcandidaalbicansinblood |