Cargando…
Letting go: Deep computational modeling insights into pH-dependent calcium affinity
Calcium and other cofactors can feature as key additions to a molecular interface, to the extent that the cofactor is completely buried in the bound state. How can such an interaction be regulated then? The answer: By facilitating a switch through an allosteric network. Although a number of unbindin...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350533/ https://www.ncbi.nlm.nih.gov/pubmed/34280436 http://dx.doi.org/10.1016/j.jbc.2021.100974 |
Sumario: | Calcium and other cofactors can feature as key additions to a molecular interface, to the extent that the cofactor is completely buried in the bound state. How can such an interaction be regulated then? The answer: By facilitating a switch through an allosteric network. Although a number of unbinding mechanisms are being characterized, an extensive computational study by Joswig et al. reveals a detailed model for the pattern recognition receptor langerin. |
---|