Cargando…

Regional and remote connectivity patterns in focal extratemporal lobe epilepsy

BACKGROUND: Focal epilepsy accounts for most epilepsy cases, and frontal lobe epilepsy (FLE) accounts for the largest proportion of cases of extratemporal epilepsy syndrome. The epileptogenic zone is usually not easy to locate, contributing to a lack of imaging studies. The objective of this study w...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Wenyu, Yue, Qiang, Gong, Qiyong, Zhou, Dong, Wu, Xintong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350670/
https://www.ncbi.nlm.nih.gov/pubmed/34430569
http://dx.doi.org/10.21037/atm-21-1374
Descripción
Sumario:BACKGROUND: Focal epilepsy accounts for most epilepsy cases, and frontal lobe epilepsy (FLE) accounts for the largest proportion of cases of extratemporal epilepsy syndrome. The epileptogenic zone is usually not easy to locate, contributing to a lack of imaging studies. The objective of this study was to evaluate functional connectivity patterns to explore the underlying pathological mechanisms of this disorder. METHODS: Forty-three patients with focal extratemporal epilepsy [mean age ± standard deviation (SD): 29.51±8.04 years, 19 males] and the same number of healthy controls (mean age ± SD: 29.56±8.02 years, 19 males) were recruited to undergo functional magnetic resonance imaging. Mean regional homogeneity (ReHo) was measured, and regions showing significant alterations in ReHo in patients were identified to examine functional connectivity (FC). In particular, FC within the default mode network (DMN) in patients was analyzed. RESULTS: Patients with extratemporal lobe epilepsy showed significantly higher ReHo in the bilateral precentral gyrus, and lower ReHo in frontal-cerebellum regions than healthy controls [P<0.05, Gaussian random field (GRF)-corrected]. FC analysis based on regions of interest showed significantly higher connectivity in the frontoparietal-insula region and lowered FC in the frontal-cerebellum regions (P<0.05, GRF-corrected). Altered FC within DMN was also demonstrated (P<0.05, GRF-corrected). CONCLUSIONS: Analyses of ReHo and FC based on regions of interest suggest epilepsy-related neural networks are located mainly in frontal regions in extratemporal lobe epilepsy. These findings reveal disruptions of interactions and connectivity of large-scale neural networks and frontotemporal-cerebellar regions, suggesting connectivity-based pathophysiology.