Cargando…

Rapid and Accurate Data Processing for Silver Nanoparticle Oxidation in Nano-Impact Electrochemistry

In recent years, nano-impact electrochemistry (NIE) has attracted widespread attention as a new electroanalytical approach for the analysis and characterization of single nanoparticles in solution. The accurate analysis of the large volume of the experimental data is of great significance in improvi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xi-Han, Zhou, Yi-Ge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350773/
https://www.ncbi.nlm.nih.gov/pubmed/34381763
http://dx.doi.org/10.3389/fchem.2021.718000
Descripción
Sumario:In recent years, nano-impact electrochemistry (NIE) has attracted widespread attention as a new electroanalytical approach for the analysis and characterization of single nanoparticles in solution. The accurate analysis of the large volume of the experimental data is of great significance in improving the reliability of this method. Unfortunately, the commonly used data analysis approaches, mainly based on manual processing, are often time-consuming and subjective. Herein, we propose a spike detection algorithm for automatically processing the data from the direct oxidation of sliver nanoparticles (AgNPs) in NIE experiments, including baseline extraction, spike identification and spike area integration. The resulting size distribution of AgNPs is found to agree very well with that from transmission electron microscopy (TEM), showing that the current algorithm is promising for automated analysis of NIE data with high efficiency and accuracy.