Cargando…
Deep learning and the electrocardiogram: review of the current state-of-the-art
In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1...
Autores principales: | Somani, Sulaiman, Russak, Adam J, Richter, Felix, Zhao, Shan, Vaid, Akhil, Chaudhry, Fayzan, De Freitas, Jessica K, Naik, Nidhi, Miotto, Riccardo, Nadkarni, Girish N, Narula, Jagat, Argulian, Edgar, Glicksberg, Benjamin S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350862/ https://www.ncbi.nlm.nih.gov/pubmed/33564873 http://dx.doi.org/10.1093/europace/euaa377 |
Ejemplares similares
-
A foundational vision transformer improves diagnostic performance for electrocardiograms
por: Vaid, Akhil, et al.
Publicado: (2023) -
Multi-center retrospective cohort study applying deep learning to electrocardiograms to identify left heart valvular dysfunction
por: Vaid, Akhil, et al.
Publicado: (2023) -
Enhancing convolutional neural network predictions of electrocardiograms with left ventricular dysfunction using a novel sub-waveform representation
por: Honarvar, Hossein, et al.
Publicado: (2022) -
Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection
por: Lala, Anuradha, et al.
Publicado: (2020) -
Development of a machine learning model using electrocardiogram signals to improve acute pulmonary embolism screening
por: Somani, Sulaiman S, et al.
Publicado: (2021)