Cargando…

BSCI-09. Multiomic single cell analysis reveals emerging principles of tumor immune microenvironment inherent to NSCLC brain metastases

Brain is one of the most common sites for distant metastasis of lung cancer. Treatment naïve lung cancer patients diagnosed with brain metastasis are left with very limited options. Checkpoint inhibition is a powerful immunotherapy strategy but delivers benefit only to a small population of patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Lei, Shan, Changguo, Liu, Da, Zhou, Cheng, Cai, Linbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351208/
http://dx.doi.org/10.1093/noajnl/vdab071.008
Descripción
Sumario:Brain is one of the most common sites for distant metastasis of lung cancer. Treatment naïve lung cancer patients diagnosed with brain metastasis are left with very limited options. Checkpoint inhibition is a powerful immunotherapy strategy but delivers benefit only to a small population of patients. Here we harnessed the power and resolution of single cell RNA sequencing and single cell TCR/BCR sequencing to investigate the tumor immune microenvironment (TIME) of NSCLC brain metastases. We enrolled treatment naïve lung cancer patients with brain metastasis. The enrolled subjects covered different histology types and driver gene mutation status. We revealed the emerging principles of innate and adaptive immune components inherent to NSCLC brain metastases. We also uncovered several significant intercellular communication patterns that potentiates cancer cell seeding and fosters cancer cell proliferation. Those results served as a starting point to design optimal immunotherapy strategies for advanced lung cancer patients with limited options.