Cargando…
Pareto optimization of deep networks for COVID-19 diagnosis from chest X-rays
The year 2020 was characterized by the COVID-19 pandemic that has caused, by the end of March 2021, more than 2.5 million deaths worldwide. Since the beginning, besides the laboratory test, used as the gold standard, many applications have been applying deep learning algorithms to chest X-ray images...
Autores principales: | Guarrasi, Valerio, D’Amico, Natascha Claudia, Sicilia, Rosa, Cordelli, Ermanno, Soda, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351284/ https://www.ncbi.nlm.nih.gov/pubmed/34393277 http://dx.doi.org/10.1016/j.patcog.2021.108242 |
Ejemplares similares
-
AIforCOVID: Predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. An Italian multicentre study
por: Soda, Paolo, et al.
Publicado: (2021) -
Multi-objective optimization determines when, which and how to fuse deep networks: An application to predict COVID-19 outcomes
por: Guarrasi, Valerio, et al.
Publicado: (2023) -
A Multimodal Ensemble Driven by Multiobjective Optimisation to Predict Overall Survival in Non-Small-Cell Lung Cancer
por: Caruso, Camillo Maria, et al.
Publicado: (2022) -
Pareto-optimization in computational electromagnetics
por: Russenschuck, Stephan
Publicado: (1993) -
Criticality in Pareto Optimal Grammars?
por: Seoane, Luís F, et al.
Publicado: (2020)