Cargando…

Multiple diagnostic tests demonstrate an increased risk of canine heartworm disease in northern Queensland, Australia

BACKGROUND: Canine heartworm (Dirofilaria immitis) is a life-threatening infection of dogs with a global distribution. Information on the prevalence of D. immitis and associated risk factors for canine heartworm antigen positivity—and thus disease—in Australia is scarce or outdated. The current refe...

Descripción completa

Detalles Bibliográficos
Autores principales: Panetta, Jessica L., Calvani, Nichola Eliza Davies, Orr, Bronwyn, Nicoletti, Aldo Gianfranco, Ward, Michael P., Šlapeta, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351338/
https://www.ncbi.nlm.nih.gov/pubmed/34372886
http://dx.doi.org/10.1186/s13071-021-04896-y
Descripción
Sumario:BACKGROUND: Canine heartworm (Dirofilaria immitis) is a life-threatening infection of dogs with a global distribution. Information on the prevalence of D. immitis and associated risk factors for canine heartworm antigen positivity—and thus disease—in Australia is scarce or outdated. The current reference method for D. immitis diagnosis in dogs is via the detection of heartworm antigen in blood using commercially available microwell-based enzyme-linked immunosorbent assays (ELISAs). Heat treatment of canine plasma prior to testing has been suggested to increase test sensitivity. The aim of the current study was to estimate the prevalence of D. immitis in dogs confined to shelters in Queensland, Australia. The impact of heat treatment on antigen test results was also assessed. METHODS: Blood samples (n = 166) were collected directly from dogs in seven shelters across Queensland (latitudinal span of approx. 1700 km) into EDTA blood collection tubes. A commercially available ELISA (DiroCHEK®) was used to detect canine heartworm antigen in untreated and heat-treated plasma. Whole blood was concurrently tested for the presence of microfilariae and D. immitis DNA using a modified Knott’s test and real-time PCR, respectively. Risk factors (age, gender, source, location) associated with the odds of positivity for canine heartworm were assessed using binary logistic regression models. RESULTS: A total of 16 dogs (9.6%; 95% confidence interval [CI]: 5.9–15.2%) were positive for canine heartworm based on combined test results. Heat treatment did not impact on the positivity of D. immitis antigen within samples (Cohen’s kappa = 0.98), but the optical density was significantly increased in paired plasma samples for D. immitis antigen-positive samples (Wilcoxon matched-pairs signed rank test, two-tailed P < 0.01). Location of the dog in a shelter in northern Queensland was the only risk factor significantly associated with the odds of a dog being more likely to be D. immitis antigen positive (odds ratio: 4.39; 95% CI: 1.26–13.51). All samples positive for the modified Knott’s test were also positive for D. immitis DNA by PCR. CONCLUSIONS: This study demonstrated the presence of heartworm-positive dogs in shelters in Queensland, with positive animals significantly more likely to occur in northern Queensland than southern Queensland. Sustained testing for the presence of D. immitis microfilariae and antigen remain important diagnostic tools in areas with known and re-emerging canine heartworm activity. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-021-04896-y.