Cargando…
Identifying potential association on gene-disease network via dual hypergraph regularized least squares
BACKGROUND: Identifying potential associations between genes and diseases via biomedical experiments must be the time-consuming and expensive research works. The computational technologies based on machine learning models have been widely utilized to explore genetic information related to complex di...
Autores principales: | Yang, Hongpeng, Ding, Yijie, Tang, Jijun, Guo, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351363/ https://www.ncbi.nlm.nih.gov/pubmed/34372777 http://dx.doi.org/10.1186/s12864-021-07864-z |
Ejemplares similares
-
A new regularized least squares support vector regression for gene selection
por: Chen, Pei-Chun, et al.
Publicado: (2009) -
Least-squares methods for identifying biochemical regulatory networks from noisy measurements
por: Kim, Jongrae, et al.
Publicado: (2007) -
Penalized partial least squares for pleiotropy
por: Broc, Camilo, et al.
Publicado: (2021) -
Consistent Partial Least Squares Path Modeling via Regularization
por: Jung, Sunho, et al.
Publicado: (2018) -
Hypergraph models of biological networks to identify genes critical to pathogenic viral response
por: Feng, Song, et al.
Publicado: (2021)