Cargando…
CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis
BACKGROUND: The rise of spatial transcriptomics technologies is leading to new insights about how gene regulation happens in a spatial context. Determining which genes are expressed in similar spatial patterns can reveal gene regulatory relationships across cell types in a tissue. However, many curr...
Autores principales: | Xu, Yang, McCord, Rachel Patton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351440/ https://www.ncbi.nlm.nih.gov/pubmed/34372758 http://dx.doi.org/10.1186/s12859-021-04314-1 |
Ejemplares similares
-
Neural encoding with unsupervised spiking convolutional neural network
por: Wang, Chong, et al.
Publicado: (2023) -
Fast model-free standardization and integration of single-cell transcriptomics data
por: Xu, Yang, et al.
Publicado: (2023) -
MASI enables fast model-free standardization and integration of single-cell transcriptomics data
por: Xu, Yang, et al.
Publicado: (2023) -
Unsupervised and supervised learning with neural network for human transcriptome analysis and cancer diagnosis
por: Yuan, Bo, et al.
Publicado: (2020) -
An Unsupervised Neural Network Feature Selection and 1D Convolution Neural Network Classification for Screening of Parkinsonism
por: Mian, Tariq Saeed
Publicado: (2022)