Cargando…
Inhibition of microsomal prostaglandin E synthase-1 ameliorates acute lung injury in mice
BACKGROUND: To examine the effects of BI 1029539 (GS-248), a novel selective human microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor, in experimental models of acute lung injury (ALI) and sepsis in transgenic mice constitutively expressing the mPGES1 (Ptges) humanized allele. METHODS: Series...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351447/ https://www.ncbi.nlm.nih.gov/pubmed/34372885 http://dx.doi.org/10.1186/s12967-021-03016-9 |
Sumario: | BACKGROUND: To examine the effects of BI 1029539 (GS-248), a novel selective human microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor, in experimental models of acute lung injury (ALI) and sepsis in transgenic mice constitutively expressing the mPGES1 (Ptges) humanized allele. METHODS: Series 1: Lipopolysaccharide (LPS)-induced ALI. Mice were randomized to receive vehicle, BI 1029539, or celecoxib. Series 2: Cecal ligation and puncture-induced sepsis. Mice were randomized to receive vehicle or BI 1029539. RESULTS: Series 1: BI 1029539 or celecoxib reduced LPS-induced lung injury, with reduction in neutrophil influx, protein content, TNF-ɑ, IL-1β and PGE(2) levels in bronchoalveolar lavage (BAL), myeloperoxidase activity, expression of mPGES-1, cyclooxygenase (COX)-2 and intracellular adhesion molecule in lung tissue compared with vehicle-treated mice. Notably, prostacyclin (PGI(2)) BAL concentration was only lowered in celecoxib-treated mice. Series 2: BI 1029539 significantly reduced sepsis-induced BAL inflammatory cell recruitment, lung injury score and lung expression of mPGES-1 and inducible nitric oxide synthase. Treatment with BI 1029539 also significantly prolonged survival of mice with severe sepsis. Anti-inflammatory and anti-migratory effect of BI 1029539 was confirmed in peripheral blood leukocytes from healthy volunteers. CONCLUSIONS: BI 1029539 ameliorates leukocyte infiltration and lung injury resulting from both endotoxin-induced and sepsis-induced lung injury. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-021-03016-9. |
---|