Cargando…
Predicting Malignancy and Invasiveness of Pulmonary Subsolid Nodules on CT Images Using Deep Learning
BACKGROUND: To develop and validate a deep learning–based model on CT images for the malignancy and invasiveness prediction of pulmonary subsolid nodules (SSNs). MATERIALS AND METHODS: This study retrospectively collected patients with pulmonary SSNs treated by surgery in our hospital from 2012 to 2...
Autores principales: | Shen, Tianle, Hou, Runping, Ye, Xiaodan, Li, Xiaoyang, Xiong, Junfeng, Zhang, Qin, Zhang, Chenchen, Cai, Xuwei, Yu, Wen, Zhao, Jun, Fu, Xiaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351466/ https://www.ncbi.nlm.nih.gov/pubmed/34381723 http://dx.doi.org/10.3389/fonc.2021.700158 |
Ejemplares similares
-
Comparison of Comprehensive Morphological and Radiomics Features of Subsolid Pulmonary Nodules to Distinguish Minimally Invasive Adenocarcinomas and Invasive Adenocarcinomas in CT Scan
por: Qiu, Lu, et al.
Publicado: (2022) -
Predicting Tyrosine Kinase Inhibitor Treatment Response in Stage IV Lung Adenocarcinoma Patients With EGFR Mutation Using Model-Based Deep Transfer Learning
por: Hou, Runping, et al.
Publicado: (2021) -
Clinical and CT Features of Subsolid Pulmonary Nodules With Interval Growth: A Systematic Review and Meta-Analysis
por: Liang, Xin, et al.
Publicado: (2022) -
The Natural Growth of Subsolid Nodules Predicted by Quantitative Initial CT Features: A Systematic Review
por: Gao, Chen, et al.
Publicado: (2020) -
Shades of Gray: Subsolid Nodule Considerations and Management
por: Azour, Lea, et al.
Publicado: (2020)