Cargando…

Predictive value of inflammation-based Glasgow prognostic score, platelet-lymphocyte ratio, and global registry of acute coronary events score for major cardiovascular and cerebrovascular events during hospitalization in patients with acute myocardial infarction

Purpose: The goal of this study was to evaluate the predictive ability of the inflammation-based Glasgow Prognostic Score (GPS), platelet-lymphocyte ratio (PLR), Global Registry of Acute Coronary Events (GRACE) score and combined diagnostic models for the occurrence of major adverse cardiovascular a...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xiaoqun, Cai, Long, Chen, Tielong, Ding, Shibiao, Zhang, Fengwei, Gao, Beibei, Zhu, Houyong, Huang, Jinyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351676/
https://www.ncbi.nlm.nih.gov/pubmed/34270463
http://dx.doi.org/10.18632/aging.203273
Descripción
Sumario:Purpose: The goal of this study was to evaluate the predictive ability of the inflammation-based Glasgow Prognostic Score (GPS), platelet-lymphocyte ratio (PLR), Global Registry of Acute Coronary Events (GRACE) score and combined diagnostic models for the occurrence of major adverse cardiovascular and cerebrovascular events (MACEs) in patients with acute myocardial infarction (AMI). Methods: In this retrospective cohort study, eligible patients were required to meet the third global definition of myocardial infarction. The primary outcome of this study was the occurrence of MACEs during hospitalization. Receiver operating characteristic (ROC) curve analysis was performed to assess the predictive ability of the GPS, PLR, GRACE scores, and joint diagnostic models for primary outcomes; univariate and multivariate logistic regression analyses were performed. Findings: A total of 175 patients were enrolled. The results of the univariate ROC curve analysis for the incidence of MACEs during hospitalization showed that the area under the curve (AUC) was 0.780 (95% confidence interval (CI) 0.696-0.864) for the GPS, 0.766 (95% CI 0.682-0.850) for the redefined GPS (RGPS), 0.561 (95% CI 0.458-0.664) for the PLR score (PLRS), and 0.793 (95% CI 0.706-0.880) for GRACE. Multivariate ROC curve analysis showed that the AUC value was 0.809 (95% CI 0.726-0.893) for the GPS combined with GRACE, 0.783 (95% CI 0.701-0.864) for the GPS combined with the PLRS, 0.794 (95% CI 0.707-0.880) for GRACE combined with the PLRS, and 0.841 (95% CI 0.761-0.921) for the GPS combined with GRACE and the PLRS. The combined diagnostic model including the GPS plus GRACE and the PLRS had a higher AUC value than the GPS, RGPS and GRACE models (P = 0.014, P = 0.004, and P = 0.038, respectively). The multivariate logistic regression model showed that the odds ratio for hospitalized MACEs was 5.573 (95% CI 1.588-19.554) for GPS scores of 2 versus 0, and the GRACE score was also an independent risk factor for MACEs, with an odds ratio of 1.023 (95% CI 1.009-1.036). Implications: The diagnostic model combining the GPS plus GRACE and the PLRS has better predictive ability for the occurrence of MACEs during hospitalization than each single score. Thus, the use of a combined GPS plus GRACE and PLRS model will be of clinical benefit in a broad group of individuals with AMI.