Cargando…

Normal-sized basal ganglia perivascular space related to motor phenotype in Parkinson freezers

Changes in basal ganglia (BG) perivascular spaces (PVSs) are related to motor and cognitive behaviors in Parkinson’s disease (PD). However, the correlation between the initial motor phenotype and PVSs distribution/burden in PD freezing of gait (FOG) remains unclear. In addition, the normal-sized PVS...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Wen, Yue, Yumei, Shen, Ting, Hu, Xingyue, Chen, Lili, Xie, Fei, Zhang, Wenying, Zhang, Baorong, Gui, Yaxing, Lai, Hsin-Yi, Ba, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351731/
https://www.ncbi.nlm.nih.gov/pubmed/34314380
http://dx.doi.org/10.18632/aging.203343
Descripción
Sumario:Changes in basal ganglia (BG) perivascular spaces (PVSs) are related to motor and cognitive behaviors in Parkinson’s disease (PD). However, the correlation between the initial motor phenotype and PVSs distribution/burden in PD freezing of gait (FOG) remains unclear. In addition, the normal-sized PVSs (nPVSs) have not been well-studied. With high-resolution 7T-MRI, we studied nPVSs burden in BG, thalamus, midbrain and centrum semiovale. The numbers and volume of nPVSs were assessed in 10 healthy controls, 10 PD patients without FOG, 20 with FOG [10 tremor dominant (TD), 10 non-TD subtype]. Correlation analyses were further performed in relation to clinical parameters. In this proof of concept study, we found that the nPVS burden of bilateral and right BG were significantly higher in freezers. A negative correlation existed between the tremor score and BG-nPVSs count. A positive correlation existed between the levodopa equivalent daily dose and BG-nPVSs count. The nPVS burden correlated with the progression to FOG in PD, but the distribution and burden of nPVS differ in TD vs. non-TD subtypes. High resolution 7T-MRI is a sensitive and reliable tool to evaluate BG-nPVS, and may be a useful imaging marker for predicting gait impairment that may evolve into FOG in PD.