Cargando…

Supercomputing, Docking and Quantum Mechanics in Quest for Inhibitors of Papain-like Protease of SARS-CoV-2

Lomonosov-2 supercomputer is used to search for new organic compounds that can suppress the replication of the SARS-CoV-2 coronavirus. The latter is responsible for the COVID-19 pandemic. Docking and a quantum-chemical semiempirical atomistic modeling method are used to find inhibitors of the SARS-C...

Descripción completa

Detalles Bibliográficos
Autores principales: Sulimov, A. V., Ilin, I. S., Kutov, D. C., Stolpovskaya, N. V., Shikhaliev, Kh. S., Sulimov, V. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pleiades Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351772/
http://dx.doi.org/10.1134/S1995080221070222
Descripción
Sumario:Lomonosov-2 supercomputer is used to search for new organic compounds that can suppress the replication of the SARS-CoV-2 coronavirus. The latter is responsible for the COVID-19 pandemic. Docking and a quantum-chemical semiempirical atomistic modeling method are used to find inhibitors of the SARS-CoV-2 papain-like protease, which is one of the key coronavirus enzymes responsible for its replication. The atomistic model of the papain-like protease of this coronavirus is based on the high-resolution structure deposited in the Protein Data Bank. The SOL docking program has been used for virtual screening of more than [Formula: see text] low molecular weight molecules (ligands). Ligands with the highest protein-ligand binding energy, selected using the docking results, were subjected to quantum-chemical calculations. The latters are performed by the PM7 semiempirical method with the COSMO implicit solvent model using the MOPAC program. The enthalpy of protein-ligand binding is calculated for the best position of the ligand in the protein. [Formula: see text] ligands were selected for experimental in vitro testing as candidates for papain-like protease inhibitors base on docking and quantum-chemical results. In case of experimental confirmation, these compounds may become the basis for direct-acting antiviral drugs for the SARS-CoV-2 coronavirus.