Cargando…
Detecting sentiment dynamics and clusters of Twitter users for trending topics in COVID-19 pandemic
COVID-19 caused a significant public health crisis worldwide and triggered some other issues such as economic crisis, job cuts, mental anxiety, etc. This pandemic plies across the world and involves many people not only through the infection but also agitation, stress, fret, fear, repugnance, and po...
Autores principales: | Ahmed, Md Shoaib, Aurpa, Tanjim Taharat, Anwar, Md Musfique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351922/ https://www.ncbi.nlm.nih.gov/pubmed/34370730 http://dx.doi.org/10.1371/journal.pone.0253300 |
Ejemplares similares
-
Reading comprehension based question answering system in Bangla language with transformer-based learning
por: Aurpa, Tanjim Taharat, et al.
Publicado: (2022) -
UDDIPOK: A reading comprehension based question answering dataset in Bangla language
por: Aurpa, Tanjim Taharat, et al.
Publicado: (2023) -
Tweet topics and sentiments relating to distance learning among Italian Twitter users
por: Stracqualursi, Luisa, et al.
Publicado: (2022) -
Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter Trends
por: Lwin, May Oo, et al.
Publicado: (2020) -
Discovering Topic-Oriented Highly Interactive Online Communities
por: Das, Swarna, et al.
Publicado: (2019)