Cargando…
Generating property-matched decoy molecules using deep learning
MOTIVATION: An essential step in the development of virtual screening methods is the use of established sets of actives and decoys for benchmarking and training. However, the decoy molecules in commonly used sets are biased meaning that methods often exploit these biases to separate actives and deco...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352508/ https://www.ncbi.nlm.nih.gov/pubmed/33532838 http://dx.doi.org/10.1093/bioinformatics/btab080 |
_version_ | 1783736194690973696 |
---|---|
author | Imrie, Fergus Bradley, Anthony R Deane, Charlotte M |
author_facet | Imrie, Fergus Bradley, Anthony R Deane, Charlotte M |
author_sort | Imrie, Fergus |
collection | PubMed |
description | MOTIVATION: An essential step in the development of virtual screening methods is the use of established sets of actives and decoys for benchmarking and training. However, the decoy molecules in commonly used sets are biased meaning that methods often exploit these biases to separate actives and decoys, and do not necessarily learn to perform molecular recognition. This fundamental issue prevents generalization and hinders virtual screening method development. RESULTS: We have developed a deep learning method (DeepCoy) that generates decoys to a user’s preferred specification in order to remove such biases or construct sets with a defined bias. We validated DeepCoy using two established benchmarks, DUD-E and DEKOIS 2.0. For all 102 DUD-E targets and 80 of the 81 DEKOIS 2.0 targets, our generated decoy molecules more closely matched the active molecules’ physicochemical properties while introducing no discernible additional risk of false negatives. The DeepCoy decoys improved the Deviation from Optimal Embedding (DOE) score by an average of 81% and 66%, respectively, decreasing from 0.166 to 0.032 for DUD-E and from 0.109 to 0.038 for DEKOIS 2.0. Further, the generated decoys are harder to distinguish than the original decoy molecules via docking with Autodock Vina, with virtual screening performance falling from an AUC ROC of 0.70 to 0.63. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/oxpig/DeepCoy. Generated molecules can be downloaded from http://opig.stats.ox.ac.uk/resources. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-8352508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-83525082021-08-10 Generating property-matched decoy molecules using deep learning Imrie, Fergus Bradley, Anthony R Deane, Charlotte M Bioinformatics Original Papers MOTIVATION: An essential step in the development of virtual screening methods is the use of established sets of actives and decoys for benchmarking and training. However, the decoy molecules in commonly used sets are biased meaning that methods often exploit these biases to separate actives and decoys, and do not necessarily learn to perform molecular recognition. This fundamental issue prevents generalization and hinders virtual screening method development. RESULTS: We have developed a deep learning method (DeepCoy) that generates decoys to a user’s preferred specification in order to remove such biases or construct sets with a defined bias. We validated DeepCoy using two established benchmarks, DUD-E and DEKOIS 2.0. For all 102 DUD-E targets and 80 of the 81 DEKOIS 2.0 targets, our generated decoy molecules more closely matched the active molecules’ physicochemical properties while introducing no discernible additional risk of false negatives. The DeepCoy decoys improved the Deviation from Optimal Embedding (DOE) score by an average of 81% and 66%, respectively, decreasing from 0.166 to 0.032 for DUD-E and from 0.109 to 0.038 for DEKOIS 2.0. Further, the generated decoys are harder to distinguish than the original decoy molecules via docking with Autodock Vina, with virtual screening performance falling from an AUC ROC of 0.70 to 0.63. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/oxpig/DeepCoy. Generated molecules can be downloaded from http://opig.stats.ox.ac.uk/resources. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-02-03 /pmc/articles/PMC8352508/ /pubmed/33532838 http://dx.doi.org/10.1093/bioinformatics/btab080 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Imrie, Fergus Bradley, Anthony R Deane, Charlotte M Generating property-matched decoy molecules using deep learning |
title | Generating property-matched decoy molecules using deep learning |
title_full | Generating property-matched decoy molecules using deep learning |
title_fullStr | Generating property-matched decoy molecules using deep learning |
title_full_unstemmed | Generating property-matched decoy molecules using deep learning |
title_short | Generating property-matched decoy molecules using deep learning |
title_sort | generating property-matched decoy molecules using deep learning |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352508/ https://www.ncbi.nlm.nih.gov/pubmed/33532838 http://dx.doi.org/10.1093/bioinformatics/btab080 |
work_keys_str_mv | AT imriefergus generatingpropertymatcheddecoymoleculesusingdeeplearning AT bradleyanthonyr generatingpropertymatcheddecoymoleculesusingdeeplearning AT deanecharlottem generatingpropertymatcheddecoymoleculesusingdeeplearning |