Cargando…
Generating property-matched decoy molecules using deep learning
MOTIVATION: An essential step in the development of virtual screening methods is the use of established sets of actives and decoys for benchmarking and training. However, the decoy molecules in commonly used sets are biased meaning that methods often exploit these biases to separate actives and deco...
Autores principales: | Imrie, Fergus, Bradley, Anthony R, Deane, Charlotte M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352508/ https://www.ncbi.nlm.nih.gov/pubmed/33532838 http://dx.doi.org/10.1093/bioinformatics/btab080 |
Ejemplares similares
-
Deep generative design with 3D pharmacophoric constraints
por: Imrie, Fergus, et al.
Publicado: (2021) -
Deep Generative Models for 3D Linker Design
por: Imrie, Fergus, et al.
Publicado: (2020) -
Incorporating Target-Specific Pharmacophoric Information
into Deep Generative Models for Fragment Elaboration
por: Hadfield, Thomas E., et al.
Publicado: (2022) -
DecoyFinder, a tool for finding decoy molecules
por: Adrià, Cereto Massagué, et al.
Publicado: (2012) -
DLAB: deep learning methods for structure-based virtual screening of antibodies
por: Schneider, Constantin, et al.
Publicado: (2021)