Cargando…
Deep Learning Improves Speed and Accuracy of Prostate Gland Segmentations on Magnetic Resonance Imaging for Targeted Biopsy
PURPOSE: Targeted biopsy improves prostate cancer diagnosis. Accurate prostate segmentation on magnetic resonance imaging (MRI) is critical for accurate biopsy. Manual gland segmentation is tedious and time-consuming. We sought to develop a deep learning model to rapidly and accurately segment the p...
Autores principales: | Soerensen, Simon John Christoph, Fan, Richard E., Seetharaman, Arun, Chen, Leo, Shao, Wei, Bhattacharya, Indrani, Kim, Yong-hun, Sood, Rewa, Borre, Michael, Chung, Benjamin I., To'o, Katherine J., Rusu, Mirabela, Sonn, Geoffrey A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352566/ https://www.ncbi.nlm.nih.gov/pubmed/33878887 http://dx.doi.org/10.1097/JU.0000000000001783 |
Ejemplares similares
-
Automated detection of aggressive and indolent prostate cancer on magnetic resonance imaging
por: Seetharaman, Arun, et al.
Publicado: (2021) -
Bridging the gap between prostate radiology and pathology through machine learning
por: Bhattacharya, Indrani, et al.
Publicado: (2022) -
Computational Detection of Extraprostatic Extension of Prostate Cancer on Multiparametric MRI Using Deep Learning
por: Moroianu, Ştefania L., et al.
Publicado: (2022) -
The Diagnostic Performance of Cxbladder Resolve, Alone and in Combination with Other Cxbladder Tests, in the Identification and Priority Evaluation of Patients at Risk for Urothelial Carcinoma
por: Raman, Jay D., et al.
Publicado: (2021) -
Impact of the COVID-19 Pandemic on Urological Care Delivery in the United States
por: Lee, Daniel J., et al.
Publicado: (2021)