Cargando…
Cost-Sensitive Classification for Evolving Data Streams with Concept Drift and Class Imbalance
Class imbalance and concept drift are two primary principles that exist concurrently in data stream classification. Although the two issues have drawn enough attention separately, the joint treatment largely remains unexplored. Moreover, the class imbalance issue is further complicated if data strea...
Autores principales: | Sun, Yange, Li, Meng, Li, Lei, Shao, Han, Sun, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352686/ https://www.ncbi.nlm.nih.gov/pubmed/34381499 http://dx.doi.org/10.1155/2021/8813806 |
Ejemplares similares
-
Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble
por: Sarnovsky, Martin, et al.
Publicado: (2021) -
Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming Combiner
por: Shyaa, Methaq A., et al.
Publicado: (2023) -
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
por: Ortíz Díaz, Agustín, et al.
Publicado: (2015) -
Measuring the Effectiveness of Adaptive Random Forest for Handling Concept Drift in Big Data Streams
por: AlQabbany, Abdulaziz O., et al.
Publicado: (2021) -
Adversarial concept drift detection under poisoning attacks for robust data stream mining
por: Korycki, Łukasz, et al.
Publicado: (2022)