Cargando…
An Active Learning Method Based on Variational Autoencoder and DBSCAN Clustering
Active learning is aimed to sample the most informative data from the unlabeled pool, and diverse clustering methods have been applied to it. However, the distance-based clustering methods usually cannot perform well in high dimensions and even begin to fail. In this paper, we propose a new active l...
Autores principales: | Chen, Fang, Zhang, Tao, Liu, Ruilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352707/ https://www.ncbi.nlm.nih.gov/pubmed/34381500 http://dx.doi.org/10.1155/2021/9952596 |
Ejemplares similares
-
Quantum algorithm for MMNG-based DBSCAN
por: Xie, Xuming, et al.
Publicado: (2021) -
Research on the method of travel area clustering of urban public transport based on Sage-Husa adaptive filter and improved DBSCAN algorithm
por: Zhang, Xinhuan, et al.
Publicado: (2021) -
Extended methods for spatial cell classification with DBSCAN-CellX
por: Küchenhoff, Leonie, et al.
Publicado: (2023) -
Improved CNN-Based Indoor Localization by Using RGB Images and DBSCAN Algorithm
por: Cheng, Fang, et al.
Publicado: (2022) -
Development clustering system IDX company with k-means algorithm and DBSCAN based on fundamental indicator and ESG
por: Pranata, Kevin Surya, et al.
Publicado: (2023)