Cargando…

No species-level losses of s2m suggests critical role in replication of SARS-related coronaviruses

The genetic element s2m has been acquired through horizontal transfer by many distantly related viruses, including the SARS-related coronaviruses. Here we show that s2m is evolutionarily conserved in these viruses. Though several lineages of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilbert, Clément, Tengs, Torstein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352927/
https://www.ncbi.nlm.nih.gov/pubmed/34373516
http://dx.doi.org/10.1038/s41598-021-95496-4
Descripción
Sumario:The genetic element s2m has been acquired through horizontal transfer by many distantly related viruses, including the SARS-related coronaviruses. Here we show that s2m is evolutionarily conserved in these viruses. Though several lineages of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) devoid of the element can be found, these variants seem to have been short lived, indicating that they were less evolutionary fit than their s2m-containing counterparts. On a species-level, however, there do not appear to be any losses and this pattern strongly suggests that the s2m element is essential to virus replication in SARS-CoV-2 and related viruses. Further experiments are needed to elucidate the function of s2m.