Cargando…
Artificial intelligence MacHIne learning for the detection and treatment of atrial fibrillation guidelines in the emergency department setting (AIM HIGHER): Assessing a machine learning clinical decision support tool to detect and treat non‐valvular atrial fibrillation in the emergency department
OBJECTIVE: Advanced machine learning technology provides an opportunity to improve clinical electrocardiogram (ECG) interpretation, allowing non‐cardiology clinicians to initiate care for atrial fibrillation (AF). The Lucia Atrial Fibrillation Application (Lucia App) photographs the ECG to determine...
Autores principales: | Schwab, Kim, Nguyen, Dacloc, Ungab, GilAnthony, Feld, Gregory, Maisel, Alan S., Than, Martin, Joyce, Laura, Peacock, W. Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353018/ https://www.ncbi.nlm.nih.gov/pubmed/34401870 http://dx.doi.org/10.1002/emp2.12534 |
Ejemplares similares
-
Machine learning in the detection and management of atrial fibrillation
por: Wegner, Felix K., et al.
Publicado: (2022) -
Machine learning detection of Atrial Fibrillation using wearable technology
por: Lown, Mark, et al.
Publicado: (2020) -
Benefits of Emergency Departments’ Contribution to Stroke Prophylaxis in Atrial Fibrillation: The EMERG-AF Study (Emergency Department Stroke Prophylaxis and Guidelines Implementation in Atrial Fibrillation)
por: Coll-Vinent, Blanca, et al.
Publicado: (2017) -
Effectiveness of an algorithm‐based care pathway for patients with non‐valvular atrial fibrillation presenting to the emergency department
por: Masica, Andrew, et al.
Publicado: (2022) -
Is machine learning the future for atrial fibrillation screening?
por: Sivanandarajah, Pavidra, et al.
Publicado: (2022)