Cargando…
Curcumin nanoparticles supported gelatin-collagen scaffold: Preparation, characterization, and in vitro study
It is possible to reveal the potential of water-insoluble drugs by increasing their solubility in water with some nanotechnology techniques. Nanosuspension technology can solve this problem by increasing the water solubility and as well as bioavailability of these drugs. The present work is pointed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353379/ https://www.ncbi.nlm.nih.gov/pubmed/34401357 http://dx.doi.org/10.1016/j.toxrep.2021.07.018 |
Sumario: | It is possible to reveal the potential of water-insoluble drugs by increasing their solubility in water with some nanotechnology techniques. Nanosuspension technology can solve this problem by increasing the water solubility and as well as bioavailability of these drugs. The present work is pointed at the evaluation of nanosuspension of curcumin, a poorly water-soluble drug. The Curcumin nanoparticules (CNs) were prepared with ultrasonnication method using dichloromethane as solvent and water as antisolvent and characterized via spectroscopic methods (UV–vis and FT-IR) and Scanning Electron Microscopy (SEM). Curcumin nanoparticules Biofilms (CNs-BF) supported gelatin-collagen scaffold were prepared. Curcumin nanoparticles were obtained by nanosuspension technique. And then, to overcome the limited effects of curcumin such as solubility and bioavailability, nanoparticle films were prepared by incorporating it into the structure of biocompatible collagen-gelatin scaffolds. Curcumin is limited by some factors that limit its clinical applicability, such as low oral bioavailability, poor water solubility and rapid degradation. However, they can be applied clinically when they are included in the structure of biocompatible gelatin-collagen scaffolds. |
---|